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We shall prove by the coordinate-free covariant treatment that the vibrational 
frequency along the reaction coordinate is exactly given by the extended 
Hessian matrix in a rigged configuration space where the reaction coordinate is 
identified with a "straight line". The diagonalization of the extended Hessian 
matrix is straightforward with no recourse to the prescribed procedure of 
eliminating the coupling matrix elements between the promoting mode of 
chemical reaction and the vibrational modes. 
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1. Introduction 

In the study of chemical reaction dynamics, the notion of reaction coordinate [1] 
has played an important role for the reduction of complicated phenomena of 
reaction dynamics. Especially, the IRC (intrinsic reaction coordinate) presented 
by Fukui [2] has been useful in this direction of research [3]; the covariant nature 
of the IRC equation guarantees the coordinate-free character of the notion of the 
reaction coordinate [4]. The reaction dynamics along the reaction coordinate has 
been studied in terms of the intrinsic dynamism, and the introduction of the 
"ex tended"  Hessian matrix plays an important role in order to analyze the 
vibrational degrees of freedom along the reaction coordinate [4, 5]. An intrinsic 
principle of least action has been proposed for the intrinsic dynamism, and as the 
stationary trajectory, the IRC draws a particular geodesic curve in a rigged 
configuration space [6]. The minimum character of the variational principles of 
the IRC-approach to chemical reaction has also been investigated [7]. 
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The progress of chemical reaction is conveniently described by the variation of the 
adiabatic potential energy U which is a function of n generalized coordinates: 
U = U(q 1 . . . . .  q')  (n is 3 N - 6 ,  N being the number of nuclei). Note that the 
configuration space of the adiabatic potential is Riemannian and it is not always 
possible to find out the appropriate orthogonal coordinate system [4]. In the 
n-dim Riemannian configuration space Rn, the reaction coordinate cannot be 
identified with the path of minimum distance between a pair of termini of chemical 
reaction. But, in a special configuration space, namely the rigged Riemannian 
configuration space R* [6], the reaction coordinate is provided with the special 
character of the path of minimum distance, i.e. the."straight line" between a pair 
of termini of chemical reaction [6, 7]. 

On the other hand, the vibrational modes along the reaction coordinate have been 
analyzed only in R,  [4-6]. Then, it has been pointed out that the vibrational 
modes are not obtained by the straightforward diagonalization of the extended 
Hessian matrix; this is because the direction of the reaction coordinate is not 
necessarily parallel to one of the eigenvectors of this matrix. So, we should trace 
the following process: (1) find out the direction of the reaction coordinate, (2) 
neglect the off-diagonal matrix elements which couple the motion along the 
reaction coordinate and the other vibrational motions perpendicular to the 
reaction coordinate, and (3) diagonalize the "reduced" Hessian matrix to obtain 
the normal vibrational modes along the reaction coordinate. In this process, it 
should be noted that the matrix to be diagonalized is not the full one but the 
"reduced" one. 

In the present paper, we shall show that in the rigged Riemannian configuration 
space R ~*, the reduction process (1)-(3) is not necessary and the straightforward 
diagonalization of the extended Hessian matrix exactly gives the normal vibra- 
tional modes along the reaction coordinate. 

2 .  T h e o r y  

In the n-dim Riemannian configuration space, the extended Hessian matrix is 
defined by [4] 

Hij = 02U/~qiaqJ-F~i~U/Oq k ( i , j  = 1 . . . . .  n), (2.1) 

and, in the operator form [6], this is represented by 

le ~ >nij <ei[. ( 2 . 2 )  

F ~. is the Christoffel symbol of second kind and e ~ is the basis vector. Note that the 
extended Hessian matrix is a covariant tensor of second kind [4]; if the trans- 
formation of coordinates q l , . . . ,  q , q , 1 , . . . ,  q,n is performed, then the new 
covariant component is given by 

, ~ ,i s ,j ( 2 . 3 )  H u = H , s ( a  q / ~ q  )(aq /~q ). 
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We shall examine the geometrical property of this matrix in two kinds of 
configuration spaces, Rn and R* ; the metric tensor of R,  is described by a~, and 
that of R* by gq [6]. 

2.1.  E x t e n d e d  Hess ian  Mat r i x  in Rn  

In the study of reaction dynamics along the reaction coordinate, the reduced 
Hessian matrix plays an important role. This matrix is constructed by eliminating 
the off-diagonal matrix elements of the extended Hessian matrix between the 
reaction coordinate and the other coordinates perpendicular to the reaction 
coordinate. In the operator form, this is represented by 

]e 'i (a)  > ISI~j (a)  < e'J(a)] (2.4) 

(hereafter in the present paper, the geometrical quantities related to the particular 
metric tensors a~j or gq are emphasized by a or g, respectively, in parentheses), 
where 

Hu(a)==-Hl i (a )  ( i , j =  1 . . . . .  n -1) ,  

=- 0 (otherwise). (2.5) 

The primed coordinate system is particularly chosen so that the reaction coor- 
dinate is the nth coordinate. If we diagonalize the reduced Hessian matrix, then 
we have n - 1 eigenvalues corresponding to the vibrational modes (reduced) along 
the reaction coordinate [4]: 

/21(a) . . . . .  fi ,-l(a).  (2.6) 

It should be noted here that if we add an operator 

-]e 'n(a) > H~n (a) < e'n(a)] 

to (2.4), the spectra (2.6) of the reduced Hessian operator are invariant (hereafter 
in the present paper, n is not the dummy index to be summed over); so, the matrix 
of the amended operator may also be called the reduced Hessian again. This 
amendment is adopted so as to obtain the most simplifized form of the coordinate- 
free covariant representation of the reduced Hessian matrix in R~ (see Appen- 
dix); after the amendment, we have 

[ e i ( a ) > l S l q ( a ) < e i ( a ) ] =  ,i - ,  ,,,, , ]e ( a ) > H q ( a ) < e ' J ( a ) ] - [ e  ( a ) > H , , , , ( a ) < e ' n ( a ) ] .  

(2.7) 

Here, ISIq(a) is the coordinate-free covariant representation of the reduced 
Hessian matrix: 

[Slii(a) : oZU/Oq ~ Oq i - {1/A1U(a)}uq - F~(a) OU/Oq k +{1/A1U(a)}~,~j, 

where 

uq = (aaU/Oq ' Oq')(a"S OU/OqS)(oU/Oqi)  

+ (aU/Oqg)(a rs OU/OqS)(O2U/Oq; Oqi), 

(2.8a) 

(2.8b) 
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.yq = F~(a)(OU/Oqk)(a ~ OU/Oq')(OU/Oq i) 

+ (OU/Oq~)(a "~ OU/OqS)C~(a)(OU/Oqk), (2.8c) 

A~ U(a) being Beltrami's differential parameter of first kind with respect to the 
adiabatic potential: 

A~ U(a) = a~i(OU/Oq')(OU/OqJ). (2.8d) 

The number of eigenvalues of this matrix now becomes n, n - 1 of them being the 
same as in (2.6): 

i l l ( a ) , . . . ,  f i ,-l(a),  - f i , ( a ) ( = - H ' ,  (a)). (2.9) 

Note that the reduced Hessian matrix H~i(a) obtained in (2.8) is also a covariant 
tensor of second order and this representation is valid for any coordinate system 
employed to describe the chemical reaction process. 

2.2. Extended Hessian Matrix in R* 

Now, let us obtain the extended Hessian matrix in R*. Since the eigenvalues 
themselves do not depend on the particular representation of the matrix, we shall 
represent the extended Hessian matrix in terms of the basis vectors in R,  for the 
sake of simplicity. Then, the matrix element has the form of (2.1) apart from the 
Christoffel symbol of second kind: F~(g) in R* is not identical to that F~(a) in Rn 
but is given by 

Fk.(g) = F~(a) +{1/A1U(a)}A k., (2.10a) 

where 

A~= (02U/OqiOqr)(ar~oU/OqS)6 k + 6k(o2U/aqiaqr)(ar~OU/Oq s) 

-aii(akr o2 U/Oqr ~q~)(aS'OU/Oq t) - F~s(a )(OU/ Oqr)(aStOU/Oqt)6~ 
k �9 r s t  t -8 i  Fis(a)(OU/Oq )(a OU/Oq )+aijakT~t(a)(OU/OqS)(at"OU/OqU). 

(2.10b) 

Using (2.1), (2.10), and (2.8), it is found that the extended Hessian matrix in R * is 
nothing but the reduced Hessian matrix in R,  apart from a constant matrix ca~i: 

Hii(g) = ISIii(a) + cai# . (2.11 a) 

where the constant e is given by 

c = {1/al U(a)}[(a k~O2 U/Oq *OqS)(a ~tc3 U/Oq t)(O U/Oq k) 

- a  kT~,(a) (a U/c~q~)(a ~0 U/~gq ~)(0 U/Oqk)]. (2.1 lb) 

This demonstrates the following theorem: 

Theorem. The vibrational frequency along the reaction coordinate is given by 
diagonalizing the extended Hessian matrix in R*. 
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The eigenvalues of the extended Hessian matrix in R* differ from those of the 
reduced Hessian matrix in Rn by the c o n s t a n t  c : 

t z i (g)  = ~ ( a ) + c  (i = 1 . . . . .  n ) ,  (2.12) 

where/~;(a) is the ith eigenvalue of the reduced Hessian matrix in R,.  Since the 
constant c is nothing but the f t , (a)  in (2.9), 

c =/~,(a) ,  (2.13) 

the eigenvalues of the extended Hessian matrix in R* are related to those in (2.9) 
as follows: 

f i l ( a ) + c  . . . . .  /2,_1(a) + c, 0. (2.14) 

3. Example 

Here we shall elucidate the present theory by a simple model potential using a 
2-dim orthogonal coordinate system {x, y}. The analytical form of the potential is 
as follows [4]: 

U ( x ,  y) = ( 1 / a 2 ) x 2 ( x  - 1) 2 + (1/b2)y 2. (3.1) 

The metric tensor gii of R* is given by 

gij = A1 U ( a ) & j ,  (3.2a) 

with 

A1 U ( a )  = ( 4 /  a 4 ) x 2 ( x  - 1)2(2x - 1)2+ ( 4 / b  4)y 2. (3.2b) 

The extended Hessian matrix in R2* is then given by using (2.1) and (2.10) as 
follows: 

H~j(g)  = {l/A1U(a)}{a 2 + 6b2(x - a+)(x - o~_)}(8/a6b6)hi i  , (3.3a) 

where 

hla = a4y 2, h22 = b 4 x 2 ( x  -- 1)2(2x - 1) 2, 

h12 = h21 = - a 2 b 2 x ( x  - 1)(2x - 1)y, (3.3b) 

and 
a~ = (3 + 45)/6. (3.3c) 

Thus, the eigenvalues of this matrix are obtained as 

/zl(g) = (2/b 2) + ( 1 2 / a 2 ) ( x  - a+) ( x  - a _ ) ,  Iz2(g) = 0. (3.4) 

Note that the constant c is now given by using (A.ld) as 

c = {1/Aa U ( a ) } [ ( 4 8 / a 6 ) x 2 ( x  - 1)2(2x - 1)2(x - o~+)(x - ce_) + ( 8 / b 6 ) y 2 ] .  (3.5) 

Accordingly, using (2.14), (3.4), and (3.5), the force constant/21(a) of the normal 
vibration along the reaction coordinate should be 

~ , ( a )  = { ( 1 2 / a 2 ) ( x  - o~+)(x - a _ ) [  z + ( 2 / b Z ) g 2 } / ( [  2 + ~2), (3.6a) 
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with 

f =  (2/ b 2)/ (2/ aZ)x(x - 1)(2x - 1), 
(3.6b) 

g = l / y ,  

which is identical to the previously obtained result of 12 l(a): see (6.3)-(6.5) of [5]. 

Table 1. Meta - IRC and the normal  modes  along the reaction coordinate for the system 
H 2 0  which belongs to the point  group C2~ 

A7 a Aq 1"2b Aq 3c Eigenvalues d and eigenvectors e 

0.0 0.0 5.0 ~1 3955.485 ~2 3391.715 ~3 2046.284 
1 v 0.733370 0.698154 0.171783 
2 v - 0 . 7 3 3 3 7 0  0.698154 0.171783 

v 3 0.0 - 0 . 4 4 8 6 7 7  1.465164 

- 1 . 0  - 0 . 0 0 0 1 6  4.92011 

- 2 . 0  - 0 . 0 0 0 3 0  4.84148 

- 3 . 0  -0 .00043  4.76410 

- 4 . 0  - 0 . 0 0 0 5 4  4.68794 

- 5 . 0  - 0 . 0 0 0 6 4  4.61298 

0.0 0.0 

3955.281 3431.901 2016.299 
0.733342 0.701363 0.158302 

- 0 . 7 3 3 3 4 2  0.701363 0.158302 
0.0 - 0 . 4 2 0 4 5 2  1.473713 

3955.080 3468.168 1987.057 
0.733315 0.704148 0.145551 

-0 .733315  0.704148 0.145551 
0.0 - 0 . 3 9 3 7 1 6  1.481255 

3954.881 3500.890 1958.689 
0.733288 0.706558 0.133513 

-0 .733288  0.706558 0.133513 
0.0 -0 .368443  1.487895 

3954.685 3530.411 1931.298 
0.733261 0.708636 0.122166 

-0 .733261  0.708636 0.122166 
0.0 - 0 . 3 4 4 5 9 4  1.493729 

3954.492 3557.042 1904.965 
0.733235 0.710421 0.111486 

- 0 . 7 3 3 2 3 5  0.710421 0.111486 
0.0 - 0 . 3 2 2 1 2 4  1.498847 

3942.204 3831.998 1648.313 
0.731591 0.719627 - 0 . 0 4 0 9 0 2  

-0 .731591  0.719627 - 0 . 0 4 0 9 0 2  
0.000000 -0 .000975  1.528605 

a Accumulat ion time of reaction: see (3.18) of [5] (in sec2amu/kg = 1.66057 x 10 -27 
see2). 

b Deviation of the O H distance from its equilibrium value: Aq 1'2 = ql,2 _ q~q2 (in ,~). 
~ Deviat ion of the angle 4 H O H  from its equilibrium value: Aq 3 = q3_  q3q (in deg). 
d Vibrational frequency along the reaction coordinate (in cm-1). 
e The eigenvectors are normalized in R3, not  in R* .  
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Another  example is the general case of non-orthogonal  internal coordinates for 
the system H 2 0  which belongs to the point group C2~. The internal coordinates of 
the present problem are given by q l =  q2 (OH distance) and q3 (~_HOH). The 
adiabatic potential energy is approximately given by Wilson's F-matrix treatment 
[8, 9]: the geometrical parameters used in the present paper are q~2 = 0.9572 ~ ,  
qeq3 = 104o32 ,, f l l  = = 8.454 m d / ~ ,  f13 = 0.224 md, f33 = 0.6971 md ~ and f12 = 
- 0 . 1 0 0  m d / ~ .  In Table 1, we shall show 1) the solution of the reaction coor- 
dinate, which is designated as meta-IRC [4], and 2) the eigenvalues and eigen- 
vectors of the extended Hessian matrix along the reaction coordinate. At the 
bottom of Table 1, the results of the usual Hessian-matrix theory at the stable 
equilibrium configuration are shown. As the reaction coordinate approaches the 
stable equilibrium configuration, the normal modes of the extended Hessian 
matrix in R* smoothly converge to those of the usual Hessian matrix in R3. In 
particular, the reaction coordinate, which is the third normal mode of the 
extended Hessian matrix in R*,  converges to the weakest normal mode at the 
stable equilibrium configuration: this assures the Stable Limit  Theorem [5]. 

4. Discussion 

We have presented the coordinate-free covariant theory of the extended Hessian 
matrix along the reaction coordinate. This enables us to obtain the vibrational 
modes of chemical reaction along the reaction coordinate at any non-equilibrium 
structure of the reaction system. 

It should be noted that, at the equilibrium structure of molecule, (1) the extended 
Hessian matrix becomes identical to the usual Hessian matrix [4], and (2) the 
normal vibrational modes of a molecule are obtained by diagonalizing the usual 
Hessian matrix. Therefore,  the present result obtained above is considered to be 
the extension of the Hessian-matrix theory of equilibrium molecule to the 
non-equilibrium process of chemical reaction dynamics. 

The inclusion of the translational and the rotational degrees of freedom to the 
present t reatment is trivial; since the rotational coordinates are not orthogonal to 
the internal coordinates, the final form of the extended Hessian matrix is not the 
extended Hessian matrix in the enlarged coordinate system but the embedded one 
of the extended Hessian matrix which is defined in the internal coordinate system, 
whose embedding process is of course not performed by the orthogonal trans- 
formation at all. 

In conclusion, the present theory unifies (1) the theory of the reaction coordinate 
(the promoting mode of chemical reaction), and (2) the theory of the extended 
Hessian matrix (the reduced normal vibrational modes along the reaction coor- 
dinate): in the rigged Riemannian space R* in the ultimately natural manner. 

Acknowledgment. This work was supported by a Grant-in-Aid for Scientific Research from the 
Ministry of Education of Japan. 



308 A. Tachibana 

Appendix 

If an o r t h o g o n a l  coo rd ina t e  sys tem is ava i lab le ,  the  r e p r e s e n t a t i o n  of the  ex ten-  
ded  Hess i an  ma t r ix  is m o r e  s implif ied.  Le t  the  pa r t i cu la r  o r t h o g o n a l  c oo rd ina t e  
sys tem be  wr i t t en  as {x 1 , . . . ,  x "}, then  the e x t e n d e d  Hess i an  mat r ix  in R *  can be  
r e p r e s e n t e d  in the  fo rm of (2.11) as fol lows:  

Hij(g) = 02U/Ox i Ox i - { 1 / A 1 U ( a ) } u i i  +c61i, ( A . l a )  

whe re  

ulj = (0 2 U/ Ox '0x r)(8 rs0 U/ OxS)( o U/  Ox j) 

+ (OU/Ox~)(~ "~ OU/ax~)(O2U/Ox ' axJ), ( A . l b )  

A I U ( a )  = 8U (OU/Oxl)(aU/Ox/),  ( A . l c )  

c = {1/A1U(a)}(t~ kr 02U/Ox" OxS)(8 st OU/Oxt)(c3U/Oxk). ( A . l d )  
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